Stepanov's Method Applied to Binomial Exponential Sums
نویسندگان
چکیده
منابع مشابه
Stepanov’s Method Applied to Binomial Exponential Sums
For a prime p and binomial axk+bxl with 1 ≤ l < k < 1 32 (p−1) 2 3 , we use Stepanov’s method to obtain the bound ∣∣∣∣∣ p−1 ∑ x=1 ep(ax k + bx) ∣∣∣∣∣ max { 1, l∆− 1 3 } 1 4 k 1 4 p 3 4 , where ∆ = k−l (k,l,p−1) .
متن کاملExplicit Bounds on Monomial and Binomial Exponential Sums
Let p be a prime and ep(·) = e2πi·/p. First, we make explicit the monomial sum bounds of Heath-Brown and Konyagin: ̨̨̨Pp−1 x=1 ep(ax d) ̨̨̨ ≤ min{λ d5/8p5/8, λ d3/8p3/4}, where λ = 2/ 4 √ 3 = 1.51967 . . .. Second, letting d = (k, l, p− 1), we obtain the explicit binomial sum bound ̨̨̨Pp−1 x=1 ep(ax k + bxl) ̨̨̨ ≤ (k − l, p− 1) + 2.292 d13/46p89/92, for any nonconstant binomial axk + bxl on Zp, by sharpeni...
متن کاملGeneralising Tuenter’s binomial sums
Tuenter [Fibonacci Quarterly 40 (2002), 175-180] and other authors have considered centred binomial sums of the form Sr(n) = ∑
متن کاملMultiple binomial sums
Multiple binomial sums form a large class of multi-indexed sequences, closed under partial summation, which contains most of the sequences obtained by multiple summation of products of binomial coefficients and also all the sequences with algebraic generating function. We study the representation of the generating functions of binomial sums by integrals of rational functions. The outcome is two...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Quarterly Journal of Mathematics
سال: 2003
ISSN: 0033-5606,1464-3847
DOI: 10.1093/qmath/hag020